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Abstract—The steady continuous system with state matrix has 

real spectrum of the multiple eigenvalues which multiplicity is equal 
to dimension of its state vector is considered. There is shown that if 
the eigenvalues modulus is less than unit, in free transient motion of 
system on norm of state vector the oscillativity which become 
apparent by initial overshoot, being replaced by monotonous 
movement to quiescent state is found. It is established that the size of 
overshoot is more, than it is less the modulus of eigenvalue and more 
its multiplicity. Later in this article the steady continuous system 
which state matrix has spectrum of the multiple complex conjugated 
eigenvalues which multiplicity is equal to a half dimension of its state 
vector is considered. The special attention is paid on the situation 
when the modulus of real part of eigenvalue is less than unit. Is 
established that in this case at a small oscillativity  of eigenvalues 
there is a noticeable overshoot in processes on norm of free transient 
motion on state vector and the size of overshoot more, than more its 
multiplicity  and imaginary part and then the real component of 
eigenvalue and is less on the modulus. 
 

I. INTRODUCTION 
The task is to research the influence of the multiplicity and 

the absolute value of the eigenvalues of the state matrix on the 
free motion steady continuous multidimensional linear 
dynamic system in the norm of the state vector. It is assumed 
that the multiplicity of the eigenvalue equal to the dimension 
of the state vector. As will be shown, we have to state systemic 
phenomenon, which consists in the fact that in the aperiodic 
system at a multiplicity of eigenvalues greater than one, and 
absolute value of the eigenvalues less than one there is the 
possibility of appreciable overshoot of the norm of the state 
vector in free motion. Found that the value of overshoot 
increases with the decrease in the absolute value of the 
eigenvalues and with increase  their multiplicity. Moreover, 
there is an opportunity to "exchange" absolute value of the 
eigenvalues for their multiplicity in the class of systems with 
fixed value of overshoot. At first the problem is solved for the 
case of a state matrix representation in the Jordan canonical 
form [1], and then research activities are carried on an 
arbitrary case. 
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II. ANALYTICAL RESEARCHES. CASE OF MULTIPLE REAL 
EIGENVALUES 

Consider the linear continuous Hurwitz multidimensional 
dynamic system given by [2,3] in the vector - matrix form 

( ) ( ) ( ) ( ),0, 0 xtxtFxtx t ==
=

                                                     (1) 

where ( ) ( )txx ,0  is vector of initial and current states of the 
system respectively; F  is its state matrix; 

( ) ( ) nnn RFRtxx ×∈∈ ;,0 . Matrix F  of system (1) given in a 
random basis, such that it has the following characteristic 
polynomial ( )λD  representation 
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Eigenvalues spectrum of matrix F: 
{ } ( )[ ]{ }niFIdetF ii ,1;:0λarg ===−== αλλσ                            (3) 
Defect of characteristic matrix of matrix [1] F: 

1)( =− FIdef λ                                                                      (4) 
From (3), (4) it follows [1] that canonical form of matrix is 

( )nn × -Jordan block )(αJ . It’s represented in the following 
form  
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Matrix in Jordan form )(αJ  generates an autonomous 
dynamical system of the type (1), defined in the Jordan 
canonical basis 

( ) ( ) ( ) ( ) ( )0~~,~~
0 xtxtxJtx t ==

=
α .                                             (6) 

Vector x~ and matrix )(αJ  are related with vector x  and 
matrix F by the following vector–matrix ratios 

( ) FSSJxSx == α,~                                                               (7) 
where S – ( )nn ×  is the non-singular similarity 

transformation matrix , allowing representation of the matrix in 
the form of 

( ) 1−= SSJF α .                                                                      (8) 
In turn, Jordan matrix )(αJ  (5) can be decomposed in a 
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following additive form 
( ) { } ( ) ( )00,1; JIJnidiagJ i +=+=== ααλα                            (9) 
where ( )0J  is nilpotent matrix [1] with the index n=ν . 
 Now, the task is to the research of the free motion of the 

system (6) in its state vector  in a scalar form. The solution of 
the system (6) is [1,2,3] 

( ) ( )( ) ( ){ } ( )0~0~,~~ xtJexpxtxtx α== .                                       (10) 
We will do scalarization of vector process (10), based on 

the use of consistent [1] vector and matrix norms. As a result, 
on the basis of (9), we obtain the sequence of ratios                 

( ) ( ){ } ( ) ( ){ } ( )
( ){ } ( ) ,0~0

0~0~~

xtJexpe

xtJexpxtJexptx
t ⋅=

=⋅≤=
α

αα
                      (11) 

where  
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From (12) it follows that the column norm ( ){ } 10 tJexp , the 

row norm ( ){ }
∞

tJexp 0  and the spectral norm ( ){ } 20 tJexp  

are the same. And they are defined by the following majorizing 
inequality 

( ){ } ( ) ( )( )

( ) ( ).,2,1,!1

!1-μ12110
1μ

0

1μ2

∞==

=++++=

∑
−

=

−

ptk

ttttJexp

k

k

p 

                        (13) 

Thus, norm of the matrix exponential satisfy the following 
relation: 

( ){ }tJexp α ( )( ) .!1
1μ

0
∑

−

=

=
k

kt tkeα                                            (14) 

From (11) and (14) it follows: 

( ) ( ){ } ( ) ( ) ( )( ) .!10~~
1μ

0
10~ ∑

−

=
=

=⋅=
k

kt
x tkextJexptx αα                       (15) 

Now, the task is to evaluation sign of the velocity change of 
norm ( )tx~  at time 0=t . We are fixing multiplicity n=µ  
eigenvalue αλ = .  We differentiate equation (15) on time: 
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Relation (16) allows us to separate the processes by their 
quality in the system (6) as a function of multiplicity 

eigenvalue αλ =  . Clear is that processes in the system (6) 
are convergent for any negative value αλ =  and any 
multiplicity,  because the multiplicative term teα  in (16) for 

( )tx~  has an infinite number of elements of the expansion in 

powers of t , and the term ( )( )∑
−

=

1μ

0

!1
k

ktk  has a finite number 

elements. 
Consequently, there is always a moment of time ∗= tt , at 

which the dominance of the exponential multiplier teα  begins 
to emerge. Now, we consider the following situations. 

Situation 1: 1,0 >< αα , ( ) 0~
0

<








=t

tx
dt
d , process 

( )tx~  converges to zero, and is majorized by an exponent in 

the form ( )tx~ ( ) ( )0~e 1 xt+≤ α . 

Situation 2: ( ) 0~,1
0

=






−=

=t

tx
dt
dα , the initial velocity is 

zero, but at 0>t  by (16) is set to a negative velocity. It is 
defined by the following relations  
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The velocity of change norm ( )tx~  on the system 
trajectories is characterized by the extremum, which is 
observed at time mt . It is defined by (15) the following 
relations 

( )
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0~

1μ

2

2

−=






 ==

=












==

−− te
dt
darg

tx
dt
dargt

t

m

                                          (18) 

And the Velocity of change norm ( )tx~   is determined by 
the relation 

( ) ( )( )

( )
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The process ( )tx~  converges to zero by (15). The process is 
majorized by an exponential function so that the following 
inequality  

( ) ( )0~ρ~ γ xetx t≤                                                                 (20) 
where  
( )

( ) ( ) ( )( )
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Situation 3 (the subject of the paper): 1,0 << αα , 
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( ) 0~
0
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=t

tx
dt
d . The process ( )tx~  at the initial interval 

time diverges, reaching a maximum at the time Mt . It is 
defined by the following relations 
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And further process ( )tx~  converges to zero. Thus, the 

process ( )tx~  on the trajectories of free motion of aperiodic 
system detects overshoot. It is numerically determined by 
value ( )1,0:α << αα  of the multiple eigenvalue and value µ 

of its multiplicity. The obvious property of process ( )tx~ : the 

smaller the value 1<α  and the more its multiplicity μ , the 

greater the value of its overshoot over the level ( )0~x . To 

illustrate this result, we perform the calculation of the time Mt  

by (21) and overshoot to the curve ( )tx~  aperiodic systems for 

time Mtt =  by (15) for different values of ( )1,0:α << αα  
and multiplicity μ . The calculation results are shown in 
Tables 1 and 2. 

μ  2 3 4 5 10 
α  Mt  
-0.2 4 8.9 13.9 18.8 43.8 
-0.02 49 99 149 199 449 

Table1.Values of moments overshoot to 
curve ( )tx~  

μ  2 3 4 5 10 

α  ( )( ) ( )M
t

txtx ~~max =  

-0.2 2.25 8.3 34.7 151.6 3.32*105 
-0.02 18.8 690 2.86*104 1.25*106 2.72*1014 

Table 2. Values of overshoot ( )( ) ( )M
t

txtx ~~max =  to curve 

( )tx~  
Now, we return to the original system (1) with the state 

matrix F , defined in an arbitrary basis. Then, by analogy with 
(10), using (8) we can write the following 

( ) ( )( ) { } ( )
( ){ } ( ).0αexp

0exp0,
1xStJS

xFtxtxtx
−=

===
                                          (22) 

If in (22) we will proceed to scalarized vector processes in 
the state vector norm of system (1), we obtain using (14), the 
following sequence of relations 
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where ||||||||}{ 1−⋅= SSSc  is condition number of the matrix 
S, { } ∞<≤ Sс1  [4]. 

The values of ( )tx  will be { }Sc  times greater than value 

of ( )tx~ , keeping the same dependence on absolute value 

α of the eigenvalue α=λ  and its multiplicity μ . 

III. COMPUTER SIMULATIONS. CASE OF MULTIPLE REAL 
EIGENVALUES  

Large Computer simulation the processes in the norm ( )tx~  
as a function of eigenvalue αλ =  and its multiplicity n=µ  
was conducted in accordance with the ratio of 

( ) ( ){ } ( ) ( ){ } ( )0~0~~ xtJexpxtJexptx ⋅≤= αα  on his 
majorizing part. This research was carried out in Matlab. The 
results of the simulation of processes in the form of ( )tx~  for 
a single set of multiplicity 10;5;3;2μ == n  and values 

0.02-; 0.2-;2−== αλ  are presented in the figures below. 
 Figure 1 shows the curves for the case 2−== αλ . 

Processes ( )tx~  converge monotonically with no overshoots 
(look situation 1). The left curve corresponds to the case 

2μ == n , and the right curve corresponds to the  case 
10.μ == n   

 
Fig.1. Curves of processes ( )tx~  for ;2−== αλ and 

10;5;3;2μ == n  
Figure 2 shows the curves for the case 20.−== αλ . 

Processes ( )tx~  detect overshoots that increase with 
increasing n=μ  (look situation 3). 
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Fig.2. Curves of processes ( )tx~  for ;2.0−== αλ and 

10;5;3;2μ == n  
Figure 3 shows the curves for the case 20.0−== αλ . 

Processes ( )tx~  detect the notable overshoots that increase 
with increasing n=μ  (look situation 3). 

 
Fig.3. Curves of processes ( )tx~  for ;2.00−== αλ and 

10;5;3;2μ == n  
Fig.4 shows the curves of constant values of 

( )( ) ( ) const~~max == M
t

txtx  in the plane « λμ − ». They 

illustrate the possibility of «exchange» multiplicity to the value 
of a multiple eigenvalue of the task at hand.  

 
Fig.4. Curves of constant values of 

( )( ) ( ) const~~max == M
t

txtx  

Figure 5 shows the curves for 20.−== αλ  for the case of 
system (1) with the matrix F  is specified in the accompanying 
row form (frobenius form), and for the case of system (6). 

Processes ( )tx  correspond with the curves ( )tx~ , but each 

time ( )tx  exceed ( )tx~  in { }Sc  times.  

 
Fig.5. Curves of processes ( )tx  (top) and ( )tx~  for 

;2.0−== αλ and 5μ == n  
 
Finally, it should be noted that if the spectrum of 

eigenvalues of the matrix F has several multiples eigenvalues 

{ }
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μ;,1;μ,1:σ αλ , the canonical 

representation F  in the Jordan form will contain q  Jordan 
blocks of ( )jj μμ × -dimension each.  Then for this case, 

relation (11) takes the following form  
( ) ( ){ }{ } ( )
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IV. ANALYTICAL RESEARCHES. CASE OF MULTIPLE COMPLEX 
CONJUGATE EIGENVALUES  

The Consider the linear continuous Hurwitz 
multidimensional dynamic system given by [2,3] in the vector 
- matrix form 

( ) ( ) ( ) ( ),0, 0 xtxtFxtx t ==
=

                                                   (24) 

where ( ) ( )txx ,0  is vector of initial and current states of the 
system respectively; F  is its state matrix; 

( ) ( ) nnn RFRtxx ×∈∈ ;,0 . Matrix F  of system (24) given in a 
random basis, such that it has the following eigenvalues 
spectrum { }Fσ   representation 

{ } ( )[ ]{
}.2,1;

:0λarg ;212;212

nijβ

FIdetF iiii

=±=

==−== −−

α

λλσ
                       (25) 

From (25) implies that the matrix F  has a single pair of 
complex conjugate eigenvalues of multiplicity 2n=µ , where 

( )xn dim= .  
Defect of characteristic matrix of matrix [1] F: 

2)( =− FIdef λ                                                                   (26) 
From (25), (26) it follows [1] that canonical form of matrix 
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is ( )nn × - "pseudo Jordan" block ( )βα,~J . 

When designing "pseudo Jordan" block ( )βα,~J  require that 
the following conditions 

( ){ } ( )αβα,~lim
0β

JJ =
→

.                                                             (27) 

To construct "pseudo Jordan" block ( )βα,~J  use structural 
view of the system 

( ) ( ) ( ) ( ) ( ),0~~,~α~
0 xtxtxJtx t ==

=
                                             (28) 

which is shown in figure 6. 
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1
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1
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1
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α α

1
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1
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( )tx1
~( )tx2

~( )tx3
~( )tx4

~( )txn 1
~

−( )txn
~

 
Fig.6. Block diagram of system (28) 

Clear that conditions (25) and (27) satisfies the following 
system 

( ) ( ) ( ) ( ) ( ).0~~,~βα,~~
0 xtxtxJtx t ==

=
                                         (29) 

Structural representation of the system (28) is obtained from 
the block diagram in fig. 6. There covered a pair of integrators 
feedback transmission factor of " 2β− ", so that it turns the 
diagram shown in fig. 7. 
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1
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1
s

1
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~( )tx2
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~( )txn 1
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Fig.7. Block diagram of system (29) 

With structural realization (fig. 7) of the system (29) can be 
"written off" the matrix ( )βα,~J , which gets the following 
representation 
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In turn, "pseudo Jordan" matrix ( )βα,~J  (30) can be 
decomposed in a following additive form 

( ) { }
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 Now, the task is to the research of the free motion of the 
system (29) in its state vector  in a scalar form. The solution of 
the system (29)  is  

( ){ } ( ) ( ){ } ( ).0~β0,~0~βα,~
))0(~,(~)(~

α xtJexpextJexp

xtxtx
t==

==
                       (32) 

We will do scalarization of vector process (32), based on 
the use of consistent vector and matrix norms. As a result, on 
the basis of (31), we obtain the sequence of ratios 

( ) ( ){ } ( )

( ){ } ( )
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                                           (33) 

Note that in the case of multiple real eigenvalues matrix 
exponential ( ){ }tJexp 0  has a clear algorithmic basis for the 
formation of its representation. And in the case of multiple 
complex conjugate eigenvalues matrix exponential 

( ){ }tJexp β,0~  does not have this property. Therefore further 

compute the matrix exponential ( ){ }tJexp β,0~  for a 
representative system situation characterized by 

.6=n 2n=µ =3. As a result, we obtain a chain of equations 
based on the calculation of the inverse Laplace transform of 
resolvent 

( ){ }tJexp β,0~ ( )( ){ }=−=
−− 11 β,0~JsIL  
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From (34) it follows that the column norm ( ){ }

1
β,0~ tJexp , 

the row norm ( ){ }
∞

tJexp β,0~  and the spectral norm 

( ){ } 20 tJexp  are the same. And they are defined by the 

following majorizing inequality 
( )

( )( ) ( )
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β
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βsin,

β2
βcosββsin

,
β8

βcosββsin,
β8

βcosβ3βsinβ3

,β,α

3

35

2

Т

ttttttt

tttttttt

tv





−





 −−−
=

=

                    (35) 

It should be noted that condition (27) holds for the norm of 
the matrix exponential in the form of norm of the vector (35). 
Indeed, under the 0β →  using the limit ( ) 1ββsinlim

0β
=

→
 and 

l'Hopital rule we prove the following limits of convergence: 

1. ;1))cos(β(lim
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=
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t  2. ;
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Thus prove to be fair the following limit transitions 
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0β pp
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 Next are formulated and solved two tasks. The first task 
is to evaluate influence of β  under the condition  

{ }10arg <∨<= ααα  on the value of overshoot. The second 
task is to evaluate possibility of the appearance of overshoot 
under the condition { }10arg ≥∨<= ααα  and the influence 

on β  value of the overshoot.  
 The results of solve the first task in the form of 

( )( ) ( ) 10~0~,~
=x

xtx , calculated by (33), on the example of the 

system situation characterized by 

,6=n 3
2

==
nµ ,  var- β&.20α:βα −=±= jλ , are 

summarized in Table 3. 
 36;n;j ==±= µβαλ  

α  .20−=α  
β  0.01 0.1 0.25 0.5 1 1.25 1.375 

( )( )
( ) 10~

0~,~max
=xt

xtx
 150 110 42 10.6 3.9 9.2 16.8 

( )( )0~,~maxarg xtxt
t

M =
 

20 17 10.5 7 7.5 9.2 9.25 

β  1.5 1.75 2 3 3.5 5 10 

( )( )
( ) 10

0,max
=xt

xtx
 

30 86 220 3700 11000 13*104 17*106 

( )( )0~,~maxarg xtxt
t

M =
 

9.3 9.35 9.4 9.56 9.6 9.72 9.93 

Table 3. Values of overshoot ( )( ) ( )M
t

txtx ~~max =  to curve 

( )tx~  
 The second task's start with graphical illustrations known 

[5] recommendations. They are to limit sector localization of 
complex conjugate eigenvalues of the system state (29). This 
limitation ensures that no overshoot in the transient response. 
This illustration is shown in Fig. 8. 

T/2
T/4

T/8

( )texp α ( )tsin β

пt t

x(0)=1

x(0)

x(t)

 
Fig. 8. Graphic illustration of the free motion generated by 

the real α  and imaginary β  components of the eigenvalue 
βα j±=λ  

We associate trajectory generated by the real part α  and the 
imaginary part β  of the ratio α3βγ2Tγ === πпt . From 
which we obtain that for ( )απ 3γβ ≤  and 0.25γ <  will not be 
overshoot otherwise it will be. Allocated by the 

)2,1(th nii =−  two-dimensional cell is determined by the 
following model  

( ) ( ) ( )[ ]
[ ] [ ]{ } ( ) ( )[ ] ( )
( ) ( )[ ] .0~,0~

0~,~,~,β,1,α

~,~~

212

212
2

212

T
ii

i
T

ii

T
iii

xx

xtxtxαcol

txtxtx

−

−

−

=

=−=

== 

 

Motion in cell is described by 
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ } ( ),0~βcos,βsinβ,βsinβ1,βcosαexp~

ii xttttcolttx −=  

for which the norm ( )txi
~  with ( ) 10~ =ix  is valid covering 

( ){ } ( ) ( )[ ] ( )[ ]{ } .1,β,β1,1αexp~ −= colttxroof i  

For coating processes (35) with ( )απ 3γβ >  justly replace 

1byβt)sin(,1by)cos(βt so that the coating can be specified 
as 

( ) ( )( ) ( ) .1,
β
1,

β2
,

β2
β1,

β8
β1,

β8
β3β3,β,αˆ

335

2 T
tttttttv





































 −









 −









 −−
=  In 

vector ( )tv ,β,αˆ  dominates the first term. This allows us to 
construct an analytic representation covering (roof) 

( ){ }tJexp β,0~  process in the form of Euclidean vector norm 

( ) ( )( )( ) ( )[ ]0,0,0,0,0,8ββ3β3,β,α~ 52 tttv −−= . It takes the form 
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( ){ }{ } ( )( )( ) ( )[ ] 21252 8ββ3β3β,0~






 −−= tttJexproof . The latter 

formula makes fair representation coating process 
( ){ }tJexp β,α~  in the form 

( ){ }{ } ( )( )( ) ( )[ ] 21252 8ββ3β3β,α~






 −−= ttetJexproof tα             (36) 

Formula (36) we use for research at the extremes of the 
norm of the matrix exponential calculating 

( ){ }{ }tJexpt
t

M βα,~maxarg=  of conditions 

( ){ }( ){ }{ } 0β,α~roof =tJexp
dt
d  generates an algebraic equation 

for computing Mt  
( ) 0
αβ

βα9
αβ

α183β
αβ

β9α3
αβ

β2α6
43

2
2

34 =
−

+
−

+
+

+
+

+ MMMM tttt             (37) 

The results of calculations Mt  using (37) are given in 
Table4. 

 β  
α  2 3 5 10 20 
-0.2 9.4 9.56 9.72 9.86 9.93 
-2  0.913 0.88 0.9 0.938 
-8    0.236 0.22 
 Mt  

Table 4. Moments Mt  overshoot in the curve ( )tx~  

V. COMPUTER SIMULATIONS. CASE OF MULTIPLE COMPLEX 
CONJUGATE EIGENVALUES  

Computer simulations of the processes carried out in the 
norm ( )tx~  for the example of system (29), characterized by 

the dimension 6=n  and multiplicity βα j±=λ  equal 
32 == nµ  in Matlab. The purpose of research is 

visualization obtained in the previous section of this paper 
results. Results were visualized for three system situations. 

The first situation is to evaluate the influence of β  under 

the condition { }10arg <∨<= ααα  by the amount of 
overshoot in the trajectories of the system (29) in the norm of 
vector ( ) ( )( )0~,~~ xtxtx = . Results of visualization of this 
situation for  

( ) ( ) ( ) fig.d) (5β,fig.c2β, fig.b1β ,fig.а0.01βfor .20 ====−=α  
are shown in Fig. 9. 

 
Fig.9. Curves of processes ( )( ) ( ) 10~0~,~

=x
xtx and their 

coverings for { }10arg <∨<= ααα and varβ =  
The curves to fully correspond to the data in table 4 and are 

characterized by sharp increase of the value of overshoot with 
the growth of the value of the imaginary part β  in area 1β > . 

 The second situation is to assess the possibility of 
occurrence of overshoot in the trajectories of the system (29) 
in the norm of vector ( ) ( )( )0~,~~ xtxtx = , 

provided { }10arg ≥∨<= ααα  and influence β  values on the 
value and character of this overshoot. The investigation of this 
situation, the authors decided to start with the examination of 
the same problems for )2,1(th nii =−  two-dimensional cell 

state vector ( ) ( ) ( )[ ]Tiii txtxtx 212
~,~~

−= . Results of visualization of 
this situation for  

( ) ( ) ( ) fig.d) (05β,fig.c20β, fig.b5β ,fig.а1βfor 8 ====−=α  are 
shown in Fig. 10. 

 
Fig.10. Curves of processes ( )( ) ( ) 10~0~,~

=x
xtx and their 

coverings for { }10arg >∨<= ααα and varβ =  
Weak damping of complex conjugate eigenvalues is already 

evident in the emissions trajectories of free motion in the norm 
state vector of two-dimensional cell. It should be expected that 
in the case of multiple complex conjugate eigenvalues, this 
effect will repeatedly increase, despite the condition 

{ }10arg >∨<= ααα . Results of visualization of this 
situation for  

( ) ( ) ( ) fig.d) (05β,fig.c20β, fig.b3β ,fig.а1βfor 8 ====−=α  are 
shown in Fig. 11. 
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Fig.11. Curves of processes ( )( ) ( ) 10~0~,~

=x
xtx and their 

coverings for { }10arg >∨<= ααα and varβ =  
The curves detect the presence of significant overshoot, 

value of which increases with increasing values of the 
imaginary part β . 

VI. CONCLUSION  
There is found that multiplicity of  the eigenvalues of state 

matrix of stable continuous systems and the structure of 
eigenvectors of state matrix [5] is an important factor in the 

system, endowing a dynamic system processes of specific 
properties that may lead to undesirable consequences of a 
destructive nature. In order to prevent the discovered effect 
"multiplicity of eigenvalues" in the synthesis of modal control 
methods [3] state matrix F should be given the spectrum of 
eigenvalues not containing multiple elements. 
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